Square SE Series

Reference Module

The Square SE series utilizes Seoul's high performing 3030 LEDs to deliver efficacies up to 190 Lm/W at typical driving currents. This solution features uniformity of light and color and enables easy installation.

Applications:

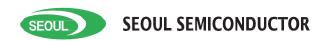
Features:

- · High efficacy, long life
- 3 SDCM
- ROHS Compliant

Key Applications:

- Street light
- · Tunnel light
- · Parking light

Product Selection: SMJD-4833064G-XXN1 I_F = 700mA, T_c = 25°C


ССТ	CRI	Flux		Dimension	Order Code	
001	ON	Min.	Тур.	Difficusion	Order Code	
3000		5140	5530		SMJD-4833064G-XXN100F53G038AII	
4000	80	5600	6020	- 223.0 x 49.5 -	SMJD-4833064G-XXN100G02E038AII	
5000		3000	0020		SMJD-4833064G-XXN100G02C038AII	
3000		5320	5720		SMJD-4833064G-XXN100F72G037AII	
4000	70	5700		SMJD-4833064G-XXN100G23E037AII		
5000		5790	6230		SMJD-4833064G-XXN100G23C037AII	

Electro Optical Characteristics: SMJD-4833064G-XXN1 I_F = 700mA, T_c = 25°C

Parameter	Symbol		Value			Remark
	-,	Min.	Тур.	Max.	Unit	
		5140	5530	-		G ,CRI80
		5600	6020	-		C,E,CRI80
Luminous Flux	Φ _V [2]	5320	5720	-	lm	G ,CRI70
		5790	6230	-		C,E,CRI70
		4745	5028	5311		С
Correlated Color Temperature [3]	CCT	3710	3985	4260	K	Е
·		2870	3045	3220		G
CDI	Ra	80	-	-	-	CRI80
CRI		70	-	-	-	CRI70
Input Voltage	VF	43.7	45.4	47.1	VDC	@700mA
Power Consumption	Р	30.6	31.8	33.0	W	@700IIIA
		-	173	-		G ,CRI80
F#F: ni nn nu	LPW -	-	190	-		C,E,CRI80
Efficiency		-	179	-	Lm/W	G ,CRI70
		-	195	-	·	C,E,CRI70

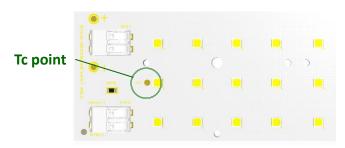
Notes:

- 1 Above data tested with constant typical current at T_c =25 °C.
- 2 $\Phi_{_{V}}$ is the total luminous flux output measured with an integrated sphere.
- 3 Correlated Color Temperature is derived from the CIE 1931 Chromaticity diagram.
- 4 To use the module properly, recommend to drive the module by a Constant Current Source (CCS). But the Maximum output voltage of the CCS should be limited by referring this sheet.

Absolute Maximum Operating Specification: $T_c = 25$ °C

Model	Parameter	Symbol	Unit	Value	Remark
	Power Consumption	Р	W	38.0	
	Forward Voltage	V _F	V	47.5	
	Driving Current ⁽²⁾	Ι _F	mA	800	
SMJD-4833064G-XXN1	Operating Temperature (3)	Tc	°C	- 40 ~ 85	Reference point
	Storage Temperature	T _{stg}	°C	- 40 ~ 100	With no power
	50D C ''' ''		101	±8	IEC Air
	ESD Sensitivity	-	KV	±4	НВМ

Notes:

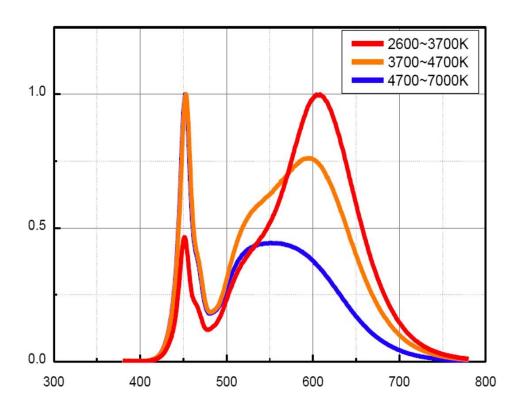

- 1 Above data tested with constant typical current at T_c =25 °C.
- 2 Φ_{v} is the total luminous flux output measured with an integrated sphere.
- 3 Correlated Color Temperature is derived from the CIE 1931 Chromaticity diagram.
- 4 To use the module properly, recommend to drive the module by a Constant Current Source (CCS). But the Maximum output voltage of the CCS should be limited by referring this sheet.

Notes:

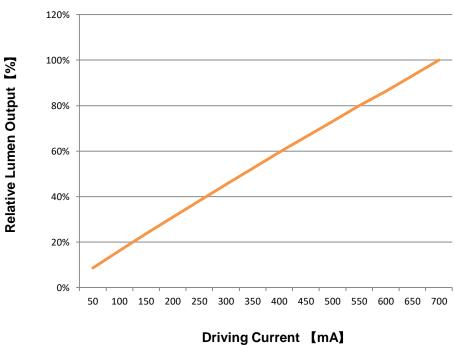
*Colors fully compliant with the CIE requested color temperatures on the following table:

Correlated Color Temperature	Nominal CCT	CCT (K)
С	5000 K	5028 ± 283
Е	4000 K	3985 ± 275
G	3000 K	3045 ± 175

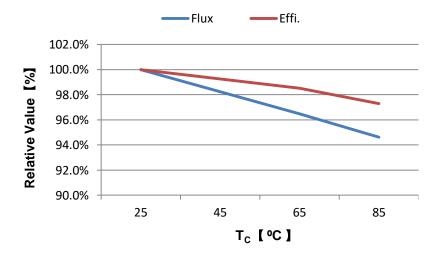
Illustration: How to predict components temperature


* Recommended Tc Testing point

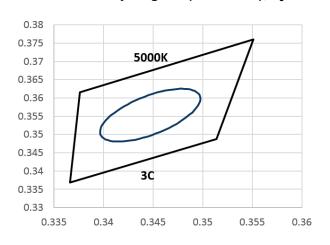
Notes:


- 1 The modules must be operated within the operating conditions stated in the Absolute Maximum Operating Specifications.
- 2 Please use a Constant Current Source (CCS) to drive the module, the typical V_F of module is 45.4 V_{DC} and V_{FMAX} is 47.1 V_{DC} , respectively.
- 3 Operating temperature was tested at the assigned Tc point on the PCB.
- 4 To ensure the module works properly, $T_{\rm C}$ should refer to "Absolute Maximum Operating Specification".

Relative Spectral Distribution

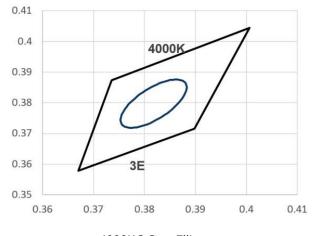

• Relative Spectral Distribution vs. Wavelength

• Scale ratio curve for related lumen output VS driving current, $T_c = 25$ °C


• Flux and Efficacy Versus Temperature at $T_C(at I_F nominal)$

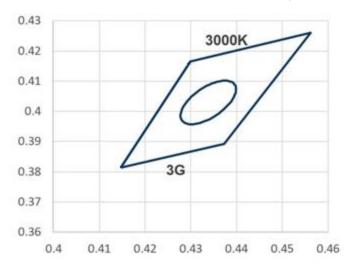
T _C [°C]	Flux[%]	Efficacy[%]
25	100	100
45	98.2	99.3
65	96.5	98.5
85	94.6	97.3

Color Bin Structure


CIE Chromaticity Diagram (Cool white), T_c = 25 °C

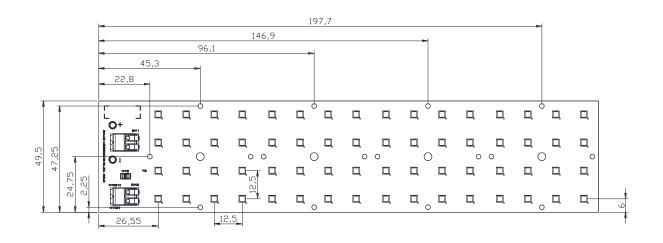
5000K 3 Step Ellipse

		3C		
x	у	а	b	theta
0.3447	0.3553	0.0081	0.0035	60


CIE Chromaticity Diagram (Nature white), T_c = 25 °C

4000K 3 Step Ellipse

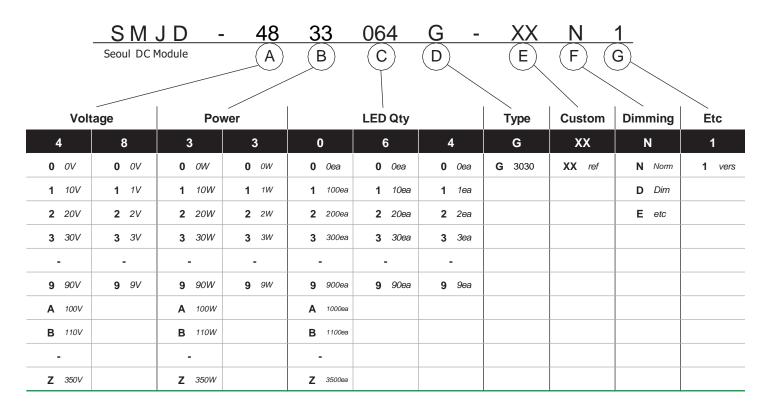
		3E		
x	у	а	b	theta
0.3818	0.3797	0.0094	0.004	53


CIE Chromaticity Diagram (Warm white), $T_c = 25$ °C

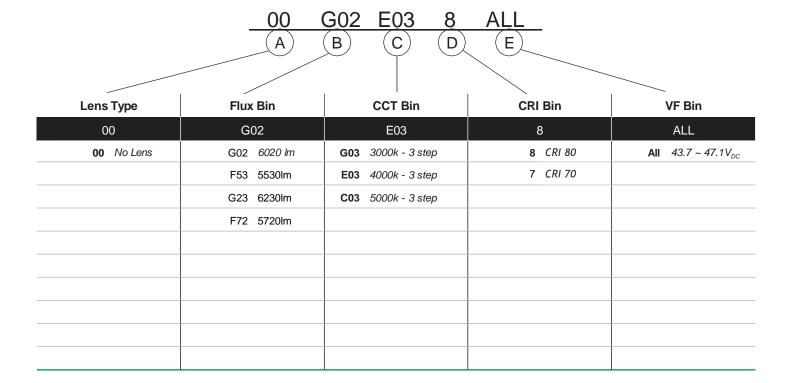
3000K 3 Step Ellipse

		3G		
x	у	а	b	theta
0.4338	0.4030	0.0085	0.0041	53

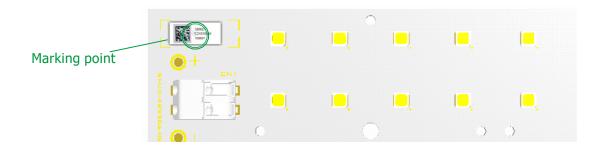
Mechanical Dimensions

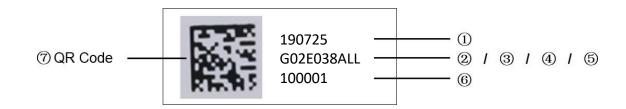


Dimension	Specification	Tolerance	Unit	
Module Length	223.0	±0.3		
Module Width	49.5	±0.3	mm	
Module Height	6.1	±0.3		
PCB Thickness	1.6	±0.2		


Product Nomenclature:

*Please refer to the following chart




Product Nomenclature: Binning

*Please refer to the following chart

Marking Information

No.	Item	Information	Digits	Remark
1	Date	YYMMDD	6 Digit	SMT date
2	Flux ⁽¹⁾	G02	3 Digit	G02=6020lm
3	CCT	X03 3-step Mixing	3 Digit	X=C,E,G
	ODI	8	4.5: "	CRI=80
4)	CRI	7	1 Digit	CRI=70
	V_{F}	ALL	3 Digit	
6	Lot No.	1	1 Digit	0~9,A~Z
	Sequence No.	Sequence No. 00001 5 Dig		00001 ~ 99999
7	QR Code	QR Code	-	Please refer to below table

Note:

Flux Bin Definitions

Symbol	lm	Symbol	lm	Symbol	lm	Symbol	lm
A50	500	D50	3500	G50	6500	J50	9500
B50	1500	E50	4500	H50	7500	K20	10200
C50	2500	F50	5500	I50	8500	L00	11000

^{*}Flux Bin - please refer to following chart for definitions:

Module QR Code Information

QR Code Information								
Items	Factory	SAP Code	SMT Date	MP Information	Line No.	Lot No.	Product	Note
Digits	1 Digit	7 Digits	6 Digits	10 Digits	1 Digit	1 Digit	5 Digits	In Total 31
Information	*	*****	YYMMDD	G02E03 8ALL	1~9, A~Z	1~9, A~Z	00001	Digits

Notes:

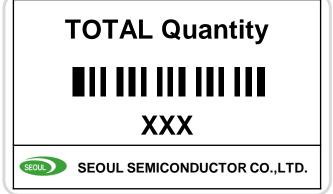
- 1 QR coded information shall include the fields described in the table above.
- 2 Minimum size of QR code shall be 4.5 mm x 4.5 mm and a minimum QR code grade of 'C'.

 *'A' grading is preferred.
- 3 If the component is small to have a full label, it is acceptable to have only the QR code in minimum size of 6 mm by 6 mm printed on a label.
- 4 QR Code Example: ******190425G02E038ALL11100001

Label Information

PO Number	XXXXX(1)		
Supplier Part Number	SMJD-4833064G-XXN100G02E038ALL(
Bin Code	G02E038ALL ⁽³⁾		
Quantity	XX 1111 11 1111 111		
Country of Origin	XX ⁽⁴⁾ IIII II III II		
Date Code	YYYWW ⁽⁵⁾		
Lot Code	YYMDDXXXXX- XXXXXXX ⁽⁶⁾		
SEOUL SEMICONDUCTOR CO.,LTD.			

Notes:


- [1] This is customer's PO Number
- [2] Please refer to SPEC page 9 (30 digit code)
- [3] Please refer to SPEC page 10
- [4] Country of Origin: 2 digit code . For example : Chinese Code: CN
- [5] Date Code: YYYYWW: Packing Date: Year + Week
- [6] Lot Code:

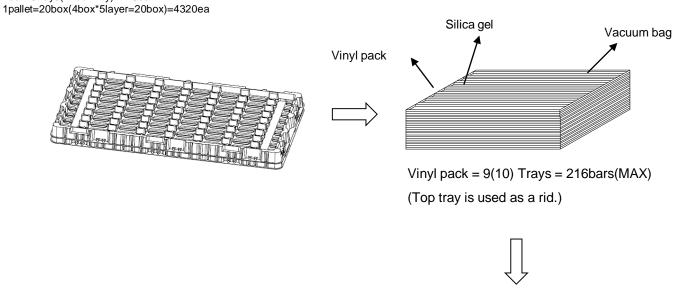
Initial of manufacture is refer to the 2D code rule.

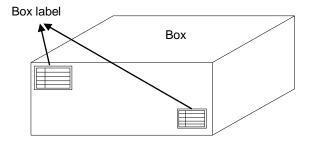
YYMDD: Packing Date (Oct.: A, Nov.: B, Dec.: C)

X: Initial of Manufacturer XXXX: Sealing Pack No. XXXXXXX: SSC SAP Code

[7] It is attached to the top left corner of the box.

Notes:


[1] Attached to the bottom right corner of the carton box.


Packaging Specification

Model	Tray		Вох		Pallet	
	Size (mm)	Q'ty per tray (ea)	Size (mm)	Q'ty per box (ea)	Saze (mm)	Q'ty per pallet (ea)
SMJD-4833064G-XXN1	580 x 430 x 30	24	600 x 448 x 202	216	1100 x 1100	4320

Note:

1box=9trays(+1dummy)=216ea

1 Box = 9(10) Trays = 216 bars (MAX)

Revision History

Revision	Date	Page	Remarks		
Rev0.1	2019-11-15	All	Preliminary data sheet		
Rev0.2	2019-12-02	1-2	Update the minimum flux value		
Rev0.3	2020-03-19	12	Update the packaging information		

Storage before use

- 1. When storing devices for a long period of time before usage, please following these guidelines.
 - The devices should be stored in the anti-static bag that it was shipped in from Seoul-Semiconductor with opening
 - If the anti-static bag has been opened, re-seal preventing air and moisture from being present in the bag.

SEOUL SEMICONDUCTOR

Company Information

Seoul Semiconductor (SeoulSemicon.com) manufacturers and packages a wide selection of light emitting diodes (LEDs) for the automotice, general illumination/ lighting, appliance, signage and back lighting markets. The company is the world's fifth largest LED supplier, holding more than 10,000 patents globally, while offering a wide range of LED technology and production capacity in areas such as "nPola", deep UV LEDs, "Acrich", the world's first commercially produced AC LED, and "Acrich MJT - Multi-Junction Technology", a proprietary family of high-voltage LEDs. The company's broad product portfolio includes a wide array of package and device choices such as Acrich, high-brightness LEDs, mid-power LEDs, side-view LEDs, through-hole type LED lamps, custom displays, and sensors. The company is vertically integrated from epitaxial growth and chip manufacture in it's fully owned subsidary, Seoul Viosys, through packaged LEDs and LED modules in three Seoul Semiconductor manufacturing facilities. Seoul Viosys also manufactures a wide range of unique deep-UV wavelength devices.

Legal Disclaimer

Information in this document is provided in connection with Seoul Semiconductor products. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Seoul Semiconductor hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. The appearance and specifications of the product can be changed to improve the quality and/or performance without notice.